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Wavelet-Based Approximation
(Introduction and Motivation)
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Some \Desirables" in Approximation Theory

� Building Block Property: Availability of a single ap-
proximating function �, called a scaling function, to serve
as a building block for approximations (or samplings) of any
given function x(t)

{ The approximation is done by having di�erent translates
of � �tted as closely as possible to x(t)

{ The translates of � are (�k)k, where �k(t) = �(t� k)
{ The approximation is represented by the multiplier coef-
�cients (ak)k of the translates (�k)k

{ Mathematically, x(t) � P
k ak�k(t)

�Malleability Property: Dilatability of the building block
� to yield higher- or lower-resolution approximations

{ Adilate of � at scale j is �j;0 = 2
j
2�(2jt)

{ The translates of dilates are �j;k = 2
j
2�(2jt� k)

{ Note that the domain size of �1;k is half that of �, and the
domain size of �2;k is quarter that of �, and so on. Thus
the music terminology \scale"

{ The multiplier 2
j
2 is to to make the dilates have the same

energy (i.e., square integral) as �

{ The higher the scale j, the higher the resolution, because
the domain size of the building block is �ner
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Some \Desirables" in Approximation Theory (Cont.)

� Analysis/Decomposition Property (part 1): Abil-
ity to derive the lower-resolution coe�cients from the next
higher-resolution coe�cients without any reference to the
original function x(t)

� Analysis/Decomposition Property (part 2): Abil-
ity to derive the coe�cients of the error e(t) (residual or
di�erence) between a higher-resolution approximation and a
lower-resolution approximation,

{ using only the higher-resolution coe�cients

{ without any reference to the original function x(t)

{ using a building block  , called wavelet

{ mathematically, e(t) = P
k bk k

� Synthesis Property: Ability to derive the higher-resolution
coe�cients directly without any reference to the original func-
tion x(t)

� Good-�t Property: Choice of a good building block � for
the application signal(s) x(t) so that the error between the
x(t) and the approximations is as small as possible
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Illustrations of Translates and Dilates
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Mathematical Formulations

� Denote by xj(t) the approximation of x(t) at scale j. That
is,

{ xj(t) =
P
k xk�j;k(t) for some (xk)k

{ xj(t) is the best approximation of x(t) among all linear
combinations of (�j;k(t))k

� Let ej�1(t) = xj(t) � xj�1(t) be the error between scale-j
and scale-(j � 1) approximations of x(t);

xj(t) = xj�1 + ej�1(t)

� Notation:
xj(t) =

P
k xk�j;k(t)

xj�1(t) =
P
k uk�j�1;k(t)

ej�1(t) =
P
k vk j�1;k(t)

� Desirable properties
{ For every x(t) in L2, xj(t) �! x(t) as j �!1
(convergence in L2)

{ Analysis property: derivability of (uk)k and (vk)k from
(xk)k

{ Synthesis property: derivability of (xk)k from both (uk)k
and (vk)k
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Conditions for Achieving
the Analysis and Synthesis Properties

� Choose the scaling function � to be composable from its own
higher-resolution dilates & translates

� Choose the wavelet  to be composable from the higher-
resolution dilates & translates of �

� Finally, higher-resolution dilates-&-translates of � should be
decomposable into lower-resolution dilates-&-translates of �
and  

� Mathematically

{ �(t) = P
n pn�(2t� n), for some sequence (pn)n

{  (t) = P
n qn�(2t� n), for some sequence (qn)n

{ �(2t� k) = 1
2
P
n [g2n�k�(t� n) + h2n�k (t� n)],

for some sequences (gn)n and (hn)n
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Relation to Subband Coding

� Theorem:
Let xj(t) =

P
k xk�j;k(t)

xj�1(t) =
P
k uk�j�1;k(t)

ej�1(t) =
P
k vk j�1;k(t)

where
�(t) = P

n pn�(2t� n)
 (t) = P

n qn�(2t� n)
�(2t� k) = 1

2
P
n [g2n�k�(t� n) + h2n�k (t� n)].

Then (xk)k is related with (uk)k and (vk)k by the following
subband coder:
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Proof of the Theorem
(Analysis stage: from (xk)k to (uk)k and (vk)k)

� �(2t� k) = 1
2
P
n [g2n�k�(t� n) + h2n�k (t� n)]

� �j;k(t)= 2
j
2�(2jt� k)

= 2
j
2
�1 P

n

�
g2n�k�(2j�1t� n) + h2n�k (2j�1t� n)

�

� �j;k(t) = 1p
2

P
n [g2n�k�j�1;n(t) + h2n�k j�1;n(t)]

� xj(t)= P
k xk�j;k(t)

= P
n

 P
k
g2n�kp

2
xk

!
�j�1;n(t) +

P
n

 P
k
h2n�kp

2
xk

!
 j�1;n(t)

� On the other hand,
xj(t) = xj�1(t) + ej�1(t) =

P
n un�j�1;n(t) +

P
n vn j�1;n(t)

� Therefore,
{ un =

P
n
g2n�kp

2
xk = u2n

{ vn =
P
n
h2n�kp

2
xk = v2n

� That is, (un)n is the down-sampled gp
2
-�ltered (xk)k, and

(vn)n is the down-sampled hp
2
-�ltered (xk)k
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Proof of the Theorem
(Synthesis stage: from (uk)k and (vk)k to (xk)k)

� �(t) = P
n pn�(2t� n)

� �j�1;k(t)= 2
j�1
2 �(2j�1t� k)

= 2
j�1
2

P
n pn�(2(2

j�1t� k)� n)
= P

n
pnp
2
2
j
2�(2jt� 2k � n)

= P
n

pnp
2
�j;2k+n(t)

� Similarly,  j�1;n =
P
n

qnp
2
�j;2k+n(t)

� xj(t)= xj�1(t) + ej�1(t)
= P

k [uk�j�1;k(t) + vk j�1;k(t)]
= P

k

"
uk

P
n

pnp
2
�j;2k+n(t) + vk

P
n

qnp
2
�j;2k+n(t)

#

= P
k
P
n

"
pnp
2
uk +

qnp
2
vk

#
�j;2k+n(t)

= P
r

(P
k

"
pr�2kp

2
uk +

qr�2kp
2
vk

#)
�j;r(t)

(where r = 2k + n)

� Since xj(t) = P
r xr�j;r(t), it follows that

xr =
X
k

2
64pr�2kp

2
uk +

qr�2kp
2
vk

3
75

which is precisely the sum of the pp
2
-�ltered upsampled (uk)k

and the qp
2
-�ltered upsampled (vk)k
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Illustration of Wavelets' Dynamic Adjustment
to Regional Variations without Blockiness

(Comparison with Whole DCT)
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Mathematical Method for Computing the Four Filters
(gn)n, (hn)n, (pn)n, (qn)n
(Symmetric Filters)

1. De�ne the z-transforms of the four �lters, with a slight scale
modi�cation:
G(z) = 1

2
P
k gkz

k, P (z) = 1
2
P
k pkz

k,
H(z) = 1

2
P
k hkz

k, Q(z) = 1
2
P
k qkz

k

2. The perfect reconstruction condition (seen before):

� PR1: G(z)P (z) +H(z)Q(z) = 1

� PR2: G(�z)P (z) +H(�z)Q(z) = 0

3. Take H(z) = �z�1P (�z) and Q(z) = �zG(�z), i.e.,
hk = (�1)kpk+1 and qk = (�1)kgk�1

4. That choice of H and Q satis�es PR2 and makes PR1 equiv-
alent to

PR01 : G(z)P (z) +G(�z)P (�z) = 1
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5. Theorem: The symmetry of the �lters along with PR01
implies that for any z = e�i!

P (z) = e�i
m
2
! cosl(!2 )S(cos!)

G(z) = ei
m
2
! cosl̂(!2 )Ŝ(cos!)

for some integers m; l and l̂, and some polynomials S and
Ŝ, such that m; l and l̂ have the same parity, and l and l̂
are positive.

6. Let N = l+l̂
2

7. Therefore,

� G(z)P (z) = (cos2(!2 ))
NS(cos!)Ŝ(cos!)

� G(�z)P (�z) = (sin2(!2 ))
NS(� cos!)Ŝ(� cos!),

because �z = e�(!+�)

8. By letting x = sin2(!2 ) and de�ning the polynomial

F (x) = S(cos!)Ŝ(cos!) = S(1� 2x)Ŝ(1� 2x),
one concludes from the previous step and PR01 the following
equation

(1� x)NF (x) + xNF (1� x) = 1
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9. The general solution of that equation is of the form

F (x) = R(x) + xNT0(x)

where R(x) is a polynomial of degree N � 1 satisfying
(1� x)NR(x) + xNR(1� x) = 1,

and T0(x) is an arbitrary polynomial such that
T0(1� x) = �T0(x)

10. The equation of R(x) implies that
R(x) + xN(1� x)�NR(1� x) = (1� x)�N :

Since (1� x)�N = P
k�0

0
BB@ N � k + 1

k

1
CCAxk and R(x) is of de-

gree N � 1, it follows that

R(x) =
N�1X
k=0

0
BB@ N � k + 1

k

1
CCAxk

11. Therefore,

F (x) =
N�1X
k=0

0
BB@ N � k + 1

k

1
CCA xk + xNT (cos!)

where T (cos!) = T0(x) is an arbitrary odd polynomial.

12. In conclusion, to get S(cos!) and Ŝ(cos!), �rst factor F (x)
by means of root �nding, then give some factors to S(cos!)
and the remaining factors to Ŝ(cos!).

14



Algorithm for Computing the Taps of the Filters

1. Input: specify l, l̂, and the polynomial T

2. N = l+l̂
2 and F (x) = PN�1

k=0

0
BB@ N � k + 1

k

1
CCAxk + xNT (1� 2x)

3. Find the roots of F (x)

4. Thus F is factored into F = F1F2:::Fr,
where every Fk is a linear or quadratic polynomial in x

5. Input: specify the index set L of the factors going to S

6. S(cos!) := Q
k2LFk(x) =

Q
k2LFk(�1�z

2

2
z�1)

7. Ŝ(cos!) := Q
k2LFk(x) =

Q
k2LFk(�1�z

2

2
z�1)

8. Compute the coe�cients of

P (z) = z
m�l
2

�
1+z
2

�l Q
k2L Fk(�1�z

2

2
z�1)

9. Let pk = the coe�cient of zk in P (z), for all k

10. Compute the coe�cients of

G(z) = (�1)l̂z�m+l̂
2

�
1�z
2

�l̂ Q
k2LFk(�1�z

2

2
z�1)

11. Let gk = the coe�cient of zk in G(z), for all k

12. Normalize (pk)k and (gk)k so that P
k pk = 2 and P

k gk = 2

13. Compute hk = (�1)kpk+1 and qk = (�1)kgk�1
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Symmetric Filters Generation

� The Compression Algorithms Group has developed an engine
that generates all symmetric �lters, and plots their frequency
response as well as their corresponding scaling functions and
wavelets
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Examples of Four-Filter Sets
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Daubechies Orthogonal Wavelets

� In orthogonal wavelets the following holds:

{ gk = pk

{ hk = (�1)kpk+1
{ qk = (�1)kgk�1

� Thus, one �lter fully speci�es all the four �lters

� Daubechies Orthogonal wavelets are the most popular

� The Compression Algorithms Group has developed an en-
gine that generates all Daubechies �lters, and plots their fre-
quency response as well as their corresponding scaling func-
tions and wavelets
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Examples of Daubechies Wavelets and Filters
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Some Research Research Topics

� Lossless Compression

{ Multistage Compression

{ Novel Predictive-based Compression

{ Selective Compression

{ \Interframe" Compression

{ Symbolic Coding

� Lossy Compression: Wavelets

{ Optimal Ways to Apply Wavelets for Compression

{ Best-Wavelet Selection

{ Multi-Wavelet compression

{ 3D Wavelet Compression (for Video)

� Statistical Modeling of Classes of Images for better Compres-
sion

� Error Resiliency
{ Error Protection (with Error Correcting Coding)

{ Error Propagation and Self-Synchronizing Coding

{ Coding with Unequal Error-Protection

� Image Quality

{ Metrics and Benchmark Tests
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{ Use of Contrast-Sensitivity Functions for Dynamic Ad-
justment of the Compression Ratio to tailor it to the spe-
ci�c user/monitor/application

� OtherWavelet Applications: Zooming, Alignment, and Mod-
eling

� E�ect of Compression-based Information Loss on the Accu-
racy of Image Processing Algorithms
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